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Recent studies of one-dimensional self-gravitating systems have raised new questions about their ergodic
properties, what defines equilibrium for these systems, and their ability to reach a state of thermal equilibrium
in a finite time. Earlier studies of small-systems N<11) using Lyapunov exponents have shown that stable
regions exist in the phase space which prevent these systems from thermalizing. Here we investigate several
smallN systems with specific initial states in an attempt to answer some of the questions of ergodicity and
relaxation toward equilibrium which have been sparked by recent Mr@d=64) simulations. Using time
averages of the specific particle energy deviations from equipartition, we see similar peaks occurring in the
data for smallN simulations as have been reported for lakgelnstead of being an indication of the onset of
equilibrium, these peaks may indicate regions of the phase space where the system resides for extremely long
periods of time. The existence of sticky regions in the phase space in both small- antll laygeems raises
guestions about the structure of the phase space, relaxation, and the appropriateness of various tests of equi-
librium. Here we show that equipartition is not sufficient to remove fundamental doubts concerning the
system'’s ergodic propertiegS1063-651X97)01908-9

PACS numbd(s): 05.45+b, 98.10+z

[. INTRODUCTION Vlasov theory for systems with a large number of compo-
nents[4]. Researchers have intensely investigated the er-
The determination of the time scale for the relaxation ofgodic properties of the OGS and its possible relaxation to-
an isolated, gravitationally bound system, such as a galaxy avard equilibrium[5-13].
globular cluster continues to be a central problem in stellar Whether the OGS is capable of reaching a true equilib-
dynamics. The one-dimensional self-gravitating systenrium state, and, if it can, when and how it occurs, have been
(OGS has been used for several decades as a simple modgérsistent questions in astrophysics since the 1960s. Much
to study relaxation in gravitating systems. Since the gravitawork has been done in studying the dynamics of small-to-
tional force in the one-dimensionélD) system is uniform, medium-sized systemsN30) looking for evidence of
the equations of motion are simple algebraic equations whicktrong ergodic behavior which would result in eventual ther-
can be easily and rapidly solved on a computer. This allowsnal equilibrium[5-13]. The study of Lyapunov exponents
for very long-time computer simulations with little loss of and the decay of correlations in time have been used in at-
numerical accuracy. In addition, simulations of one-tempts to determine when and if thermalization occurs. A
dimensional systems do not suffer from some of the difficul-positive Lyapunov exponent would guarantee the existence
ties encountered in three dimensiofs.g., singularities, of a mechanism for the OGS to come to equilibrium in a
evaporatiof, but as a consequence may not have as strong finite time starting from arbitrary initial conditions if the en-
connection with the real universe. Computer simulations okrgy hypersurface has a single ergodic component. Despite
the 1D systems show that they tend to progress through varextensive research, the ergodic properties of the OGS are still
ous quasiequilibrium states as they evolve from arbitrary ininot well understood, and many fundamental questions re-
tial conditions. These quasiequilibrium states often last fomain.
very long times, and are approximately stationary. The decay There are however, several facts that are known about the
of fluctuations within the quasiequilibrium state is referred tosystem. For example, many of the basic equilibrium proper-
as microscopic relaxation to distinguish it from the longer,ties of the OGS were derived by Rybidki4]. In his paper,
macroscopic, time scale for achieving thermal equilibrium.Rybicki derived the single-particle equilibrium distribution
Recent dynamical simulations have demonstrated that the réinction using both the canonical and microcanonical en-
laxation time to equilibriundif it exists) from arbitrary initial ~ sembles. In the larght limit, keeping the total energy and
conditions is orders of magnitude greater than had been prenass fixed, these discrete particle distribution functions re-
dicted. duce to the Vlasov forms previously derived by Camm using
The one-dimensional self-gravitating system was origi-methods taken from plasma physi]. Vlasov dynamics
nally suggested as a model for the motion of stars perpermay be valid, and have been applied to very large collections
dicular to the plane of a highly flattened galapdy2]. Since  of gravitating masses such as galaxies and globular clusters
then, others have used the system to study Lynden-Bell'n which the particles can be treated in a mean-field approxi-
theory of violent relaxatiof3], and the usefulness of the mation.
In addition, very long-lived core-halo structures jn
spaceq pw=(x,v)] are known to occur in the OGS following
*Electronic address: K.Yawn@tcu.edu an initial period of violent relaxation from arbitrary initial
"Electronic address: B.Miller@tcu.edu conditions. In the real universe these types of structures are
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1.000 el ol el el ool o after the initial “equilibrium” peak. Within the time period
3 r simulated,A(t) seems to continue its trend toward zero, al-
though with small but noticeable peaks continuing to occur.
The discovery of these secondary peaks provided the initial
motivation for this study.
0.100 3 In this paper we first show that(t)—0 does not imply
1 ' ergodicity, and then verify this by giving an example where
A(t)—0 for a known nonergodic system. In this way we
show thatA(t)—0 is a necessary, but not sufficient, condi-
tion for ergodicity. Next, we examine the behaviorft) in
0.010 2 several small population versions of the O@$=4, 6, 8,
1 . and 10 and qualitatively compare the results to a large (
=64) system whose initial state was sampled directly from
the canonical ensemble. For small systeNs<(1), stable
structures have been shown to exist in the phase space which
0001 e prevent the system from fully exploring the complete energy
100 rom e g0 o 1on 1o 0 hypersurfacg12,13. Very long-time simulations of these
small systems yield more complete information about the
FIG. 1. A(t) for a 64-particle system with the waterbag initial strycture of the phase space which sheds light on the phase
conditions showing an “equilibrium” peak as defined by Tsuchiya, space structure of larger systems. For several systaft},
_Konishi and (_Soudg followed by a general trend toward zero. TimeSeems to approach a nonzero constant. At f@stallN) the
is measured in units of time to flatness increases rapidly with but then seems to
saturate at about £@ime units.

observed in configuration space.g., in globular clustejs
and are typified by a dense, massive core in near-equilibrium Il. DESCRIPTION OF THE SYSTEM

conditions surrounded by a halo of high-energy particles ) i i L :
(stars that interact only weakly with the core material. The discrete one-dimensional gravitating system is a col-

In a recent series of papers, Tsuchiya, Konishi, and Goud_@ction ofN planar shgets .of constant mass dengitgfinite
conducted long-time simulations of medium- to lafgesys- I S&, thex andy directions, that can move along tize
tems (N=16-512) to observe evidence of thermalizationdirection under their mutual gravitational attraction. Only

[15,16. They constructed a global measuxét) of the de- gravitational forces are considered, thus the sheets do not
viation from equipartition. As a working hypothesis, they collide but merely pass throughross one another. Since all

assumed for the OGS that, f(t) approaches zero, the sys- sheets h_ave the same mass density, during a crossing the
tem is ergodic and comes to equilibrium. Using time aVer_sheets simply exchange accelerations and therefore experi-

ages of the specific particle energy deviations from the infince & discrete jump, while the sheet velocities remain con-

nite time average equipartition energy valli&(t)], they tinuous functions of time. Between crossings the sheets sim-

tracked the evolution of the system starting from arbitrary.ply underg(_) uniform accgler_atlo_n produced by the
initial conditions. In generalA(t) will approach zero on an !nhomogenelty of the mass d|str|put|on. Because Fhe system
infinite time scale, a necessary condition for a system thalt isolated, momentum conservation allows us to fix the cen-

achieves equilibrium. However, in systems that cannot freeI);er c_)f mass a_nd set the to_tal momentum to zero. The accel-
roam the energy surfadeonergodit, A(t) may still tend to eration experienced by thgh sheet from the left depends

zero if certain symmetry conditions are satisfied, even if theOnIy on the difference between the number of shéiass

system is confined to a subset of the energy surface, or fe the right and the left, and is given by
may approach a constant different from zero if the symmetry A =27Go(N-2j+1) 1)
is broken. ' '

All of the simulations reported by Tsuchiya, Konishi, and whereG is the universal gravitational constant. The energy
Gouda showed a characteristic large pealk () some time  of a system of sheets is constant and is given by
after the system had microscopically relaxed. This jump was
attributed to the onset of a transition from an arbitrary qua-
siequilibrium state to true macroscopic equilibrium. The be-
havior of A(t) was assumed to continue its trend toward zero
after this initial peak. Both the microscopic and macroscopiovherev; andx; are the velocity and position of tjéh sheet,
relaxation time scales were empirically found to be propor+espectively. If the particles are ordered and labeled consecu-
tional to N with different proportionality constants. The tively from left to right (i.e., X; . 1>X;), the energy can then
population dependence of these time scales was recenthe expressed as
shown to follow directly from diffusion models developed

N
E=%0'2 Uj2+27TGO'22 |Xi—XJ-|, (2
=1 =i

N N—-1
and studied by the authof$7-19. . 2 2 . .
Figure 1 shows the results of a dynamical simulation we E= 5‘721 vj+2mGo 121 JIN=DXje1=xp)- - (9
carried out on a 64-particle system with the “waterbag” ini-
tial conditions(constant density i space of Refs.[15,16. To see this, consider the work done by gravity in reducing

Several other discrete jumps il(t) can be seen to occur the distancex;,;—X; to zero, while keeping the distances
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between all other sheets constant. This work is equivalent to 1 ) v a(— )9 (N=1)!?
bringing two sheets together of majss and N—j)o (i.e., B=i=, A=27Go", Aj=—r—— — .

. ) kT (N—-1—-q)!(N—1+q)!
the mass on the left and righiRepeat this process for each (10)

pair of sheets until all the sheets are coincident. The potential

energy is given by the sum of those terms, and the totak is Boltzmann’s constant] is the temperature, arld is the
energy is that shown in E@3). It is customary to define the total number of particles in the system.

characteristic period of a sheet in the system tas In the Vlasov limit the total energy and mass of the sys-
=(Gpo/m) Y2, wherep, is the equilibrium mass density tem is held constant while the number of particles in the
evaluated at the origin. This represents a typical period ogystem is allowed to approach infinity. The probability den-
oscillation of a particle in the system. Because the potentiasity in u=(x,v) space of the resulting continuous fluid sat-
energy is a homogeneous function of the coordinates of firskfies the Vlasov equation

degree, all dependence on parameters can be removed by

i i i i : of of of
introducing convenient units as follov/44]: AN A (11)
at Ix Jdv
2E 4E |12 1 |[E]”
L=3 M2’ :{m , TZ[%HW} ; In this limit, the velocity and position equilibrium distribu-

(4) tion functions reduce to
— =12 _ .2 H
whereL is the length\V is the velocity,T is the time,G is 0(v)=m "exp—v%) (velocity),
the universal gravitational constant, akdand M are the 3 .
total system energy and mass, respectively. Dimensionless p(x)=zsect(x) (position, (12
units of acceleration, velocity, position, and time are ther\Nherex andv are in dimensionless units
given by '

A V [3M| 12 ll. STATISTICAL MEASURES
A-a=5ug Vous5 (?) The state of a dynamical system is given by a single point
in the 2N-dimensional phase spa€E space, whose trajec-
371G M2 t tory is governed by Hamiltonian dynamics as the state of the
X—X ( 5E )X, t—>7'=?. (5) system changes. Since initial conditions are never exactly

known, a probability density can be defined that indicates a

We will adopt th its in th inder of th | range of possible states that the system can occupy. For a
€ will adopt these units In the remainder of the paper. N, ,seryative system such as the OGS, the total energy is a
these units the characteristic perigg=277, and 2rG=1.

With th I p 1 th £ ih constant and defines an isolating integral. Therefore, the
Ith t e tort1a m_ass IxedM =1, the average energy of the phase-space trajectory of the system will be restricted to the

system is t erE=0.75. _ ._energy hypersurfacgz defined by the Hamiltonian.
Obviously, the system can also be viewed as a collectio

f icl X L di ; h of " Fora system to approach equilibrium from an initial ar-
of particles(mass poinfsmoving In one dimension, each o bitrary state it must exhibit two important properties in the
massm= 1/N, wherem replacess in Egs.(1)—(3), and we

. . . ; ) phase space: ergodicity and mixing. A system is ergodic if
will use this Ianguage f.reely.lln dimensionless umts Fhe aCihe phase-space average of a dynamical quantity is equal to
celeration of thgth particle with the ordered labeling is the time average. Ergodic flow can exist on the energy sur-
face only if there are no other isolating integrals that will
a, :i (N=2j+1). 6) restrict the trajectories. The above properties imply that all
N areas of the energy surface are equally accessible, all states
on the energy surface are equally probable, and the system
Rybicki derived an exact expression for the canonical andvill spend equal time in equal areas on the energy surface.
microcanonical single particle distribution function for the Ergodicity is a necessary, but not a sufficient, condition for a
discrete systenil4]. The canonical single-particle distribu- system to approach equilibrium from an arbitrary initial
tion function takes the form state. To approach equilibrium, the system must also exhibit
the property of mixing. The decay of correlations in time is a
fo(P,X)=6.(p)pc(X), (7) necessary consequence of mixing behavior in phase space
[20]. Even so, mixing theorems generally tell us nothing
with about the rate of approach to equilibrium or the mechanisms
to achieve it. Determining if specific systems are ergodic and
12 — BNp? mixing is typically very difficult and has been proven exactly
ex;{m}, ®  for only a few systems. In addition the role of dimension
(number of degrees of freedgnm shaping the ergodic prop-
N—1 erties and macroscopic behavior of dynamical systems is not
pc(X)=NB\ >, Ag'exli—Nﬁ?\mxl], (9) well understood. Di_mension may play a critical role in thg
q=1 phase space evolution of gravitational systems. Systems with
long range gravitational forces, where every particle continu-
where ously “feels” every other particle, may evolve in phase

BN
27mo(N—1)

0.(p)=
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space differently than systems with short range near- !
neighbor forces such as gases.

As one measure of phase space ergodicity, Tsuaktiyd
have used a test for equipartition of energy in the OGS

[15,16. The energy per unit magspecific energyof the jth o |
particle in the system is given by A
1 N
2j= 300+ 2 P -x(0)]. (13

0.01

Following Boltzmann, if a system is completely ergodic over
the energy surface, the value of a macroscopic observable
guantity is simply the time average of the corresponding mi-

croscopic operator evaluated over an infinite time o - o oo o v o000
Collision Number
=lim = f dt b(x(t))= b. (14 FIG. 2. A plotted vs the cumulative number of collisioelli-
T | sion number for a ten particle one-dimensional colliding mass

point gas with all particles having equal mass. For this known non-

Equipartition of energy, the equal division of the system en-ergodic systemA decreases on average as a function time.
ergy among its constituent particles in a dynamical system
over an indefinitely long time, is based only on the equalitythe three-particle version of the OGS, and is associated with
of simple time averages. Thus, for a system of pairwise ininterparticle correlations and the clumping of particles in the
teracting particles, if the time average kinetic energy is thephase spacg22].
same for each particle, and the time-averaged interaction po- To illustrate these ideas, we briefly consider an entirely
tential is the same for every pair, equipartition is guaranteeddifferent system consisting of mass points on the line which
If, further, the interaction potential is a homogeneous funcinteract solely via elastic collisions. Figures 2 and 3 show
tion of orderw, the virial theorem fixes the relationship be- dynamical simulations of this one-dimensional, colliding,
tween the time averaged kinetic and potential end@.  mass point gas using as a measure of equipartitiga3].
Ergodicity is not required here either, only the existence offigure 2 showsA vs the cumulative number of collisions
bounds for the coordinates and momenta. (collision numbey for a system of ten equal mass particles. It

For a system that achieves equipartition and has order is well known that a finite system of equal mass points is not
=1, the infinite time average of the specific enefgypergy  ergodic since, on collision, they just exchange velocity.
per unit masg ¢; will assume a unique value for &l However, we can see that the system is capable of efficiently
sharing energy between particles so thats a decreasing
function (on averaggtending toward zero, indicating equi-
partition of energy. Figure 3 showsvs the collision number
for a system of ten particles with masses randomly drawn

During a simulation, we can measure the degree of deviatioffom a uniform distribution.
from equipartition by computing the quantity

o1 (T 5E
gi=lim T fo gi(t)dt=¢g(= 3 (15

T—w

1

1 1 N o 12
A(t)zg—o(ﬁiil[smt)—so]z) , (16

0.1

whereg,(t) is the averaged value of the specific energy up to
a timet.

For systems that exhibit ergodic behavior on the energy
surface, the quantitj (t) should tend to zero in the infinite
time limit. However, as we have seen, equipartition of en-
ergy is not sufficient to prove ergodicity, and therefore is not 4 |
a conclusive measure of the approach to equilibrium. Ac-
cording to Tsuchiya, Konishi, and Goud&(t) tends to zero
approximately a$~ 2. If there exist other isolating integrals
that restrict the trajectories of the system on the energy sur- 3 10 100 1000 1000 100000 1000000
face (segmented phase space regions exist where the tra- Collision Number

jectories tend to remain for very long timésticky areaj FIG. 3. A plotted vs the cumulative number of collisiofwlli-
thenA(t) should converge to a nonzero constéf#itten in - gjon number for a ten particle one-dimensional colliding mass
a finite time. This “time to flatness” ofA(t) should increase point gas with masses drawn from a random distribution. This sys-
with increasingN, and would be evidence of nonergodicity tem has been shown to approach the equilibrium distribution in the
and long-time correlations that prevent proper energy sharin@ng time limit (see Ref[23]). Here alsaA decreases on average as
among the particles. This asymmetry is known to occur ina function time as expected.
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Numerical simulations have shown that this system re-  gp 4l ol ol el el
laxes to the theoretical equilibrium distribution function on a ]
finite time scale. Comparisons between the numerical and
theoretical distributions were made using a cumulappfe
statistic with a level of significance much less than G24d].

This implies that this system is both ergodic and mixing. We

see in Fig. 3 thaf\(t) tends toward zero as expected. There-

fore, as we discussed earlier, we see in these dynamica
simulations that equipartition of energy by itself does not

guarantee ergodicity.

< 0.10 o o

IV. SMALL- N DYNAMICAL SIMULATIONS
AND RESULTS

Previous studies of the OGS indicate very interesting
phase-space properties for smidllsystems. In particular, E e —
studies by Reidl and MillefRM) showed the possible exis- 10”10 10° 107 10t 10
tence of a critical populationN=11) in which 1D systems fime
become chaoti¢12,13. An estimate for the thermalization  FIG. 4. A(t) for a four-particle system whose initial condition is
time for anN=11 system was 3:410't,(~1.95<10°7) as  a small perturbation from the breathing mode. Several peaks are
a lower bound. Their work also suggested a rapid increase iseen, and a flattening occurs arourdl x 10°. Time is measured
the thermalization time with an increase in system populain units of 7.
tion.

Lyapunov exponents were calculated as a function of time,, ) njetely unexpected as the system population increases
for each mode using two nearby trajectories. Convergence QwardN=11

2 2‘23"20%?3:”3]}’ ae’;?r‘l’”lzmer""gg:g g;dr;]caéfﬁ:gtat Jﬂgep*_‘ase From Figs. 7 and 8, it is too difficult to tell i (t) will
P 9 9 P ' 9 continue its general downward trend to zero or will flatten

mented. However, the simulations were not run for long ¢ What is ¢l is thah (1) d ; v slowl
enough to confirm positively the convergence of theOUt: at1s clear 1S (1) decreases extremely slowly,

Lyapunov exponents to a single value for the two differentSVen Very far. out in time where any effects of fluctuations
modes. Convergence at a much longer time was inferred b{fom equipartition should be extremely small.
extrapolation of the data. Even if the OGS is not ergodic and 10 determine ifA(t) plots can distinguish between stable
mixing atN=11, these experiments seem to indicate a fun@nd unstable regions in the phase space, we chose the initial
damental change in behavior at the critical population. Acondition as a small perturbation from the highly stable
flattening of A(t) to a nonzero constant in a finite time for Mode 1 periodic orbit. Figure 9 shows a typical plot for an
N=11 would indicate nonergodic behavior and segmentatiofN==8 system. In common with the earlier plots, which arise
of the phase space. However, if no flattening were observel unstable regions of the phase space, here also we see one
in a finite simulation time, the results would be inconclusive,
since we have seen that equipartition of energy is not a suf- 4 il il il
ficient measure of an approach to equilibrium. 3

To test these ideas we first investigated several shhall-
systemgN=4, 6, 8, 10, and 1lusing the statistical methods
described in Sec. lll. The initial conditions are small pertur-
bations from known periodic orbit¢breathing mode and 0.100 L
mode 1 derived by RM and described in Ref&2] and[13]. 1 .
The breathing mode is highly unstable, and small perturba-
tions from periodicity grow very rapidly for all system popu- <
lations due to the high probability of multiple particle en-
counters. Mode 1 orbits are much more stable than the ., | L
breathing mode since they contain only two-particle encoun- ] E
ters, but appeared to become unstable for even the smalles
perturbation at a population &f=11.

In Figs. 4—8 we plofA vs time in units ofr for each of the
above systems. The approximate time to flatness, where vis- oc0r |
ible, is indicated in the caption. Althoudfi<11 systems are 100 10t 10?10 10t 10® w0 107 a0®
not ergodic, prominent peaks ik are apparent in each fig- fime
ure. In addition, the&\=4, 6, and 8 systems seem to develop [, 5. A(t) for a six-particle system whose initial condition is
flat regions after a time which increases wiNh No flatness 3 small perturbation from the breathing mode. An initial large peak
has developed in thBl=10 and 11 systems after a time s seen followed by several smaller peaks. The general decline to-
=4x10®7. This increase in time to flatness, if indeAdn  ward zero inA(t) is interrupted by a flattening that occurs around
these higher-dimensional systems exhibits flatness, is net2x10’. Time is measured in units of
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FIG. 6. A(t) for an eight-particle system whose initial condition
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FIG. 8. A(t) for an 11-particle system whose initial condition is

is a small perturbation from the breathing mode. Several largé small perturbation from the breathing mode. Two initial peaks are

peaks are seen followed by several smaller peaks. The general
cline toward zero iMA(t) is interrupted by a flattening that occurs
aroundt=1.5x 1C%. Time is measured in units af

large and several smaller peaks followed by a continued r

duction inA(t).

V. EQUILIBRIUM INITIAL CONDITIONS AND RESULTS

equilibrium is correct, then it should not arise if the initial

gseen followed by several smaller pealdgt) continues its general
trend toward zero with no obvious flattening. A large jump upward
is seen aroundi=2.5x 10%. Time is measured in units af

density, Eqs.(7)—(10) derived by Rybicki[14]. However,
Shis procedure would ignore the correlations between par-

ticles. Therefore the resulting point in phase space would not
be characteristic of true equilibrium. To avoid this difficulty

we carefully initialized a 64-particle system by directly sam-

) ) o pling the canonical ensemble. The method we selected re-
If the hypothesis of Tsuchiya, Konishi, and Gouda thatspects all of the interparticle correlations and therefore is a
the occurrence of the large peakArft) signifies the onset of highly probable representation of equilibrium for the OGS.

The

canonical

distribution is

given by

state is drawn from the equilibrium ensemble. To construct(1/z, Jexp(— BH)], whereZ,, is the partition function anéf
an equilibrium state, it is tempting to simply sample the equi-s the system Hamiltonian. To sample the configuration

librium u-space distribution, Eq12), directly. ForN=64 it

space, we note from E@3) that the potential energy of the

is easily shown that this is close to the exact single-particleyystem can be written as a sum over nearest-neighbor dis-
tances. Thus, in the canonical ensemble, these nearest-

ol

pood i

| B RTTTY EARTEETTT BRI R TTTY

ol v e vvid vl o g cod el
1.000 7 g
4 F vornl 3 el 0
b r 1.000 A
0.100
] g 0.100
< | ]
F <]
0.010 -
1 - 0.010
O‘OO‘] AL T T LU R L T T ™ T 7
10 10" 102 10 10t 10® 10 107 1e® 10® 0.001 e
Time 10O 10! 102

FIG. 7. A(t) for a ten-particle system whose initial condition is
a small perturbation from the breathing mode. Two large peaks are FIG. 9. A(t) for an eight-particle system whose initial condition

seen followed by several smaller pealift) continues its general

Time

is a small perturbation from mode |. One large peak is seen after a

trend toward zero with no obvious flattening, although a graduakonsiderable time has paft(t) continues its general trend toward

reduction of slope becomes apparent arotr® X 10°. Time is

measured in units of.

zero with no obvious flattening, although a significant reduction in

slope is seen arounid=4x 10’. Time is measured in units af
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1.00g sl il sl el sl ol properties should be well known, but this is not the case.
] F The papers by Tsuchiya, Konishi, and Gouda suggest that
computations ofA(t) and its asymptotic behavior provide a
measure of the attainment of equilibrium, which requires
strong ergodic properties. Thus, if their hypothesis that the
0-100 3 3 first large peak occurring in plots & vs time signifies the

] i onset of equilibrium were correct, this would provide such a
o 1 r tool. Unfortunately, our studies of both small and large sys-
tems do not support this.

We have shown that a majority of the dynamical simula-
tions of both stable and unstable nonergodic siNailer-
sions of the OGS, as well as a 64-particle system prepared in
an equilibrium state, exhibit a large central pealiit) and
other peaks which decrease in size on average as time
progresses. Rather than indicating the onset of equilibrium,
00 1ol 102 107 10t 10 10° 107 10® these peaks i\ (t) probably represent areas of the phase

Time space in which the system resides for very long periods of

FIG. 10. A(t) for a 64-particle system with the initial condition fime (sticky regiong, since these occur in systems with
sampled from the canonical ensemble. An “equilibrium” peak is Known stable structures on the energy hypersurface in phase
seen around=1x 10" followed by a general trend toward zero. space. The nature of the time averageA¢t) would tend to
Time is measured in units of reduce the magnitude of peaks that occur later in time even if

these peaks were caused by similar events.
neighbor distances are distributed exponentially. After sam- Equipartition of energy, i.e., the vanishing 4{t) in the
pling the exponentials, the particle positions are then shifteésymptotic {—o0) limit, has classically been associated with
to fix the center of mass at the origin. The particle velocitiesthe approach to equilibrium. Since the classic studies of non-
are set by first freely sampling a single particle’s velocitylinear oscillators carried out by Fermi, Pasta, and UJa],
from a Gaussian distribution, and then using Levy's methodenergy equipartition has been identified with equilibrium. In
[24] to obtain the velocities of the othdr—1 particles of the  this paper we have shown that blind faith in equipartition as
ordered system from the canonical ensemble under the addi-|itmus test for equilibrium is not justified. Lack of equipar-
tional constraint that the total momentum vanishes. Furthejition, or “flattening” [i.e., the failure ofA(t) to converge to
details can be found elsewher4,18. zerg|, certainly demonstrates nonergodic behavior. Flatten-

The motivation for Sampling the canonical ensemble is thg indicates a Segmented energy surface and broken sym-
create an initial condition which is a typical equilibrium metry on actual trajectories. These features were demon-
state. This is not to imply that the system evolves isotherstrated in the various dynamical simulations described here.
mally, i.e., while interacting with a heat bath. Once the en-simuylations of multiple colliding mass points on a line show
ergy is set in a simulation, it remains fixed. However, sincea (t) approaching zero for both ergodiconequal magsand
the potential energy of the system is a homogeneous functiofonergodic(equal massversions of the multiple colliding
of the coordinates of degree 1, the ergodic properties of gass point system. For the OGS systems, we found either
phase space orbit do not depend on the engtdy so that  flattening or equipartition depending on the initial condi-
the canonical ensemble is also appropriate for fihite tions. For theN=8 system, equipartition of energy seems to

Figure 10 shows\(t) up to a timet=1x 10°7 for asimu-  occur even in a stable region of the phase space. In common
lation with the initial equilibrium system described above.jth the earlier simulations of Tsuchiya, Konishi, and
We see here that tha(t) resulting from the equilibrium  Gouda, all systems were run for a period of time between
system has all of the central features, with the exception 0i* and 1Gr. It is of course possible that flattening could
flattening, of both small and large. occur in any of these systems on longer time scales and hints
of this may be seen in the 64-particle simulations.

In summary, a number of studies have shown a decided
lack of an approach to equilibrium. There is evidence that the

The determination of the ergodic properties of an arbitraryOGS resides for some time in states which look like equilib-
dynamical system with many degrees of freedom is ex{ium and then later drifts awa}g]. In addition, studies of
tremely difficult with current tools. There are a few systemstime correlations did not show conclusive convergence to
where definite statements are possible. Commonly knowgero on very long-time scald40]. Systems initialized in a
examples of integrable systems are colliding point masses ostationary, nonequilibrium, Vlasov stafeaterbag have re-
the line (equal masses coupled linear oscillators, and the mained in this state for long times, and have provided no
Toda lattice, whereas some known ergodic systems are avidence of thermalization or evolution to another stationary
assortment of billiard¢stadium, Sinai, wedge, ejcProofs  state[26]. At the same time, dynamical studies of small sys-
of ergodicity, either analytic or numerical, for systems withtems have shown the presence of a chaotic segment of the
arbitrary degrees of freedom are extremely rare. Because tlanergy hypersurface whose measure increasesNvithhat
dynamics of the OGS is only slightly more complex thanis, the system looks more like a thermodynamic systeiN as
point particles on the line, it might seem that the ergodicincreases. Examples of this behavior are the increasing
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Kolmogorov entropy found by Benettin, Froeschle, andistence of sticky regions in the phase space where the system
Scheideckef27], the increase of the diffusion rate of par- is localized for long time periods. At this time, we believe
ticles out of cluster§28], and the approach of the velocity that there is no definitive proof of ergodicity in the OGS.
and position distributions to the predictions of the microca-
nonical ensembl§29,30.

In earlier work we showed that the mode 1 orbit changes ACKNOWLEDGMENTS
from stable to unstable &=11. A possible scenario for this
system is that stable periodic orbits always exist in the phase The input and discussions with Dr. Charles J. Reidl, Jr.
space for any finitéN, but that their number decreases with were greatly appreciated, as well as the work done and
N. This will have to be explored later. In this current work graphs provided by his student Trushar Sarang. The authors
we have shown that recent measures proposed to test relaadso benefited from the support of the Research Foundation
ation to equilibrium are insufficient, but do indicate the ex-of Texas Christian University.
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