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Ergodic properties and equilibrium of one-dimensional self-gravitating systems

Kenneth R. Yawn* and Bruce N. Miller†

Department of Physics, Texas Christian University, Fort Worth, Texas 76129
~Received 15 October 1996!

Recent studies of one-dimensional self-gravitating systems have raised new questions about their ergodic
properties, what defines equilibrium for these systems, and their ability to reach a state of thermal equilibrium
in a finite time. Earlier studies of small-N systems (N,11) using Lyapunov exponents have shown that stable
regions exist in the phase space which prevent these systems from thermalizing. Here we investigate several
small-N systems with specific initial states in an attempt to answer some of the questions of ergodicity and
relaxation toward equilibrium which have been sparked by recent large-N (N564) simulations. Using time
averages of the specific particle energy deviations from equipartition, we see similar peaks occurring in the
data for small-N simulations as have been reported for largeN. Instead of being an indication of the onset of
equilibrium, these peaks may indicate regions of the phase space where the system resides for extremely long
periods of time. The existence of sticky regions in the phase space in both small- and large-N systems raises
questions about the structure of the phase space, relaxation, and the appropriateness of various tests of equi-
librium. Here we show that equipartition is not sufficient to remove fundamental doubts concerning the
system’s ergodic properties.@S1063-651X~97!01908-9#

PACS number~s!: 05.45.1b, 98.10.1z
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I. INTRODUCTION

The determination of the time scale for the relaxation
an isolated, gravitationally bound system, such as a galax
globular cluster continues to be a central problem in ste
dynamics. The one-dimensional self-gravitating syst
~OGS! has been used for several decades as a simple m
to study relaxation in gravitating systems. Since the grav
tional force in the one-dimensional~1D! system is uniform,
the equations of motion are simple algebraic equations wh
can be easily and rapidly solved on a computer. This allo
for very long-time computer simulations with little loss o
numerical accuracy. In addition, simulations of on
dimensional systems do not suffer from some of the diffic
ties encountered in three dimensions~e.g., singularities,
evaporation!, but as a consequence may not have as stro
connection with the real universe. Computer simulations
the 1D systems show that they tend to progress through v
ous quasiequilibrium states as they evolve from arbitrary
tial conditions. These quasiequilibrium states often last
very long times, and are approximately stationary. The de
of fluctuations within the quasiequilibrium state is referred
as microscopic relaxation to distinguish it from the long
macroscopic, time scale for achieving thermal equilibriu
Recent dynamical simulations have demonstrated that th
laxation time to equilibrium~if it exists! from arbitrary initial
conditions is orders of magnitude greater than had been
dicted.

The one-dimensional self-gravitating system was or
nally suggested as a model for the motion of stars perp
dicular to the plane of a highly flattened galaxy@1,2#. Since
then, others have used the system to study Lynden-B
theory of violent relaxation@3#, and the usefulness of th
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Vlasov theory for systems with a large number of comp
nents @4#. Researchers have intensely investigated the
godic properties of the OGS and its possible relaxation
ward equilibrium@5–13#.

Whether the OGS is capable of reaching a true equi
rium state, and, if it can, when and how it occurs, have b
persistent questions in astrophysics since the 1960s. M
work has been done in studying the dynamics of small-
medium-sized systems (N,30) looking for evidence of
strong ergodic behavior which would result in eventual th
mal equilibrium @5–13#. The study of Lyapunov exponent
and the decay of correlations in time have been used in
tempts to determine when and if thermalization occurs.
positive Lyapunov exponent would guarantee the existe
of a mechanism for the OGS to come to equilibrium in
finite time starting from arbitrary initial conditions if the en
ergy hypersurface has a single ergodic component. Des
extensive research, the ergodic properties of the OGS are
not well understood, and many fundamental questions
main.

There are however, several facts that are known about
system. For example, many of the basic equilibrium prop
ties of the OGS were derived by Rybicki@14#. In his paper,
Rybicki derived the single-particle equilibrium distributio
function using both the canonical and microcanonical
sembles. In the large-N limit, keeping the total energy and
mass fixed, these discrete particle distribution functions
duce to the Vlasov forms previously derived by Camm us
methods taken from plasma physics@2#. Vlasov dynamics
may be valid, and have been applied to very large collecti
of gravitating masses such as galaxies and globular clus
in which the particles can be treated in a mean-field appro
mation.

In addition, very long-lived core-halo structures inm
space@m5(x,v)# are known to occur in the OGS following
an initial period of violent relaxation from arbitrary initia
conditions. In the real universe these types of structures
2429 © 1997 The American Physical Society
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2430 56KENNETH R. YAWN AND BRUCE N. MILLER
observed in configuration space~e.g., in globular clusters!,
and are typified by a dense, massive core in near-equilibr
conditions surrounded by a halo of high-energy partic
~stars! that interact only weakly with the core material.

In a recent series of papers, Tsuchiya, Konishi, and Go
conducted long-time simulations of medium- to large-N sys-
tems (N516– 512) to observe evidence of thermalizati
@15,16#. They constructed a global measureD(t) of the de-
viation from equipartition. As a working hypothesis, the
assumed for the OGS that, ifD(t) approaches zero, the sy
tem is ergodic and comes to equilibrium. Using time av
ages of the specific particle energy deviations from the i
nite time average equipartition energy value@D(t)#, they
tracked the evolution of the system starting from arbitra
initial conditions. In general,D(t) will approach zero on an
infinite time scale, a necessary condition for a system
achieves equilibrium. However, in systems that cannot fre
roam the energy surface~nonergodic!, D(t) may still tend to
zero if certain symmetry conditions are satisfied, even if
system is confined to a subset of the energy surface,
may approach a constant different from zero if the symme
is broken.

All of the simulations reported by Tsuchiya, Konishi, an
Gouda showed a characteristic large peak inD(t) some time
after the system had microscopically relaxed. This jump w
attributed to the onset of a transition from an arbitrary q
siequilibrium state to true macroscopic equilibrium. The b
havior ofD(t) was assumed to continue its trend toward z
after this initial peak. Both the microscopic and macrosco
relaxation time scales were empirically found to be prop
tional to N with different proportionality constants. Th
population dependence of these time scales was rece
shown to follow directly from diffusion models develope
and studied by the authors@17–19#.

Figure 1 shows the results of a dynamical simulation
carried out on a 64-particle system with the ‘‘waterbag’’ in
tial conditions~constant density inm space! of Refs.@15,16#.
Several other discrete jumps inD(t) can be seen to occu

FIG. 1. D(t) for a 64-particle system with the waterbag initi
conditions showing an ‘‘equilibrium’’ peak as defined by Tsuchiy
Konishi and Gouda followed by a general trend toward zero. Ti
is measured in units oft.
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after the initial ‘‘equilibrium’’ peak. Within the time period
simulated,D(t) seems to continue its trend toward zero,
though with small but noticeable peaks continuing to occ
The discovery of these secondary peaks provided the in
motivation for this study.

In this paper we first show thatD(t)→0 does not imply
ergodicity, and then verify this by giving an example whe
D(t)→0 for a known nonergodic system. In this way w
show thatD(t)→0 is a necessary, but not sufficient, cond
tion for ergodicity. Next, we examine the behavior ofD(t) in
several small population versions of the OGS~N54, 6, 8,
and 10! and qualitatively compare the results to a largeN
564) system whose initial state was sampled directly fr
the canonical ensemble. For small systems (N,11), stable
structures have been shown to exist in the phase space w
prevent the system from fully exploring the complete ene
hypersurface@12,13#. Very long-time simulations of these
small systems yield more complete information about
structure of the phase space which sheds light on the p
space structure of larger systems. For several systems,D(t)
seems to approach a nonzero constant. At first~small N! the
time to flatness increases rapidly withN, but then seems to
saturate at about 108 time units.

II. DESCRIPTION OF THE SYSTEM

The discrete one-dimensional gravitating system is a c
lection ofN planar sheets of constant mass densitys infinite
in, say, thex and y directions, that can move along thez
direction under their mutual gravitational attraction. On
gravitational forces are considered, thus the sheets do
collide but merely pass through~cross! one another. Since al
sheets have the same mass density, during a crossing
sheets simply exchange accelerations and therefore ex
ence a discrete jump, while the sheet velocities remain c
tinuous functions of time. Between crossings the sheets s
ply undergo uniform acceleration produced by t
inhomogeneity of the mass distribution. Because the sys
is isolated, momentum conservation allows us to fix the c
ter of mass and set the total momentum to zero. The ac
eration experienced by thej th sheet from the left depend
only on the difference between the number of sheets~mass!
to the right and the left, and is given by

Aj52pGs~N22 j 11!, ~1!

whereG is the universal gravitational constant. The ener
of a system of sheets is constant and is given by

E5 1
2 s(

j 51

N

v j
212pGs2(

j , i
uxi2xj u, ~2!

wherev j andxj are the velocity and position of thej th sheet,
respectively. If the particles are ordered and labeled cons
tively from left to right ~i.e., xj 11.xj !, the energy can then
be expressed as

E5 1
2 s(

j 51

N

v j
212pGs2 (

j 51

N21

j ~N2 j !~xj 112xj !. ~3!

To see this, consider the work done by gravity in reduc
the distancexj 112xj to zero, while keeping the distance

,
e
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56 2431ERGODIC PROPERTIES AND EQUILIBRIUM OF ONE- . . .
between all other sheets constant. This work is equivalen
bringing two sheets together of massj s and (N2 j )s ~i.e.,
the mass on the left and right!. Repeat this process for eac
pair of sheets until all the sheets are coincident. The poten
energy is given by the sum of those terms, and the t
energy is that shown in Eq.~3!. It is customary to define the
characteristic period of a sheet in the system astc
5(Gr0 /p)21/2, wherer0 is the equilibrium mass densit
evaluated at the origin. This represents a typical period
oscillation of a particle in the system. Because the poten
energy is a homogeneous function of the coordinates of
degree, all dependence on parameters can be remove
introducing convenient units as follows@14#:

L5
2E

3pGM2 , V5F 4E

3M G1/2

, T5F 1

pMGGF E

3M G1/2

,

~4!

whereL is the length,V is the velocity,T is the time,G is
the universal gravitational constant, andE and M are the
total system energy and mass, respectively. Dimension
units of acceleration, velocity, position, and time are th
given by

A→a5
A

2pMG
, V→v5

V

2 S 3M

E D 1/2

X→x5S 3pGM2

2E DX, t→t5
t

T
. ~5!

We will adopt these units in the remainder of the paper.
these units the characteristic periodtc'2pt, and 2pG51.
With the total mass fixed,M51, the average energy of th
system is thenE50.75.

Obviously, the system can also be viewed as a collec
of particles~mass points! moving in one dimension, each o
massm51/N, wherem replacess in Eqs. ~1!–~3!, and we
will use this language freely. In dimensionless units the
celeration of thej th particle with the ordered labeling is

aj5
1

N
~N22 j 11!. ~6!

Rybicki derived an exact expression for the canonical a
microcanonical single particle distribution function for th
discrete system@14#. The canonical single-particle distribu
tion function takes the form

f c~p,x!5uc~p!rc~x!, ~7!

with

uc~p!5F bN

2ps~N21!G
1/2

expF 2bNp2

2s~N21!G , ~8!

rc~x!5Nbl (
q51

N21

Aq
Nexp@2Nblquxu#, ~9!

where
to
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b5
1

kT
, l52pGs2, Aq

N5
q~21!q21@~N21!! #2

~N212q!! ~N211q!!
.

~10!

k is Boltzmann’s constant,T is the temperature, andN is the
total number of particles in the system.

In the Vlasov limit the total energy and mass of the sy
tem is held constant while the number of particles in t
system is allowed to approach infinity. The probability de
sity in m5(x,v) space of the resulting continuous fluid sa
isfies the Vlasov equation

] f

]t
52v

] f

]x
2a

] f

]v
, ~11!

In this limit, the velocity and position equilibrium distribu
tion functions reduce to

u~v !5p21/2exp~2v2! ~velocity!,

r~x!5 1
2 sech2~x! ~position!, ~12!

wherex andv are in dimensionless units.

III. STATISTICAL MEASURES

The state of a dynamical system is given by a single po
in the 2N-dimensional phase space~G space!, whose trajec-
tory is governed by Hamiltonian dynamics as the state of
system changes. Since initial conditions are never exa
known, a probability density can be defined that indicate
range of possible states that the system can occupy. F
conservative system such as the OGS, the total energy
constant and defines an isolating integral. Therefore,
phase-space trajectory of the system will be restricted to
energy hypersurfaceSE defined by the Hamiltonian.

For a system to approach equilibrium from an initial a
bitrary state it must exhibit two important properties in t
phase space: ergodicity and mixing. A system is ergodi
the phase-space average of a dynamical quantity is equ
the time average. Ergodic flow can exist on the energy s
face only if there are no other isolating integrals that w
restrict the trajectories. The above properties imply that
areas of the energy surface are equally accessible, all s
on the energy surface are equally probable, and the sys
will spend equal time in equal areas on the energy surfa
Ergodicity is a necessary, but not a sufficient, condition fo
system to approach equilibrium from an arbitrary initi
state. To approach equilibrium, the system must also exh
the property of mixing. The decay of correlations in time is
necessary consequence of mixing behavior in phase s
@20#. Even so, mixing theorems generally tell us nothi
about the rate of approach to equilibrium or the mechanis
to achieve it. Determining if specific systems are ergodic a
mixing is typically very difficult and has been proven exac
for only a few systems. In addition the role of dimensio
~number of degrees of freedom! in shaping the ergodic prop
erties and macroscopic behavior of dynamical systems is
well understood. Dimension may play a critical role in th
phase space evolution of gravitational systems. Systems
long range gravitational forces, where every particle conti
ously ‘‘feels’’ every other particle, may evolve in phas
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2432 56KENNETH R. YAWN AND BRUCE N. MILLER
space differently than systems with short range ne
neighbor forces such as gases.

As one measure of phase space ergodicity, Tsuchiyaet al.
have used a test for equipartition of energy in the O
@15,16#. The energy per unit mass~specific energy! of the j th
particle in the system is given by

« j5
1
2 v j

2~ t !1
1

N (
i 51

N

uxi~ t !2xj~ t !u. ~13!

Following Boltzmann, if a system is completely ergodic ov
the energy surface, the value of a macroscopic observ
quantity is simply the time average of the corresponding
croscopic operator evaluated over an infinite time

B5 lim
T→`

1

T E
0

T

dt b„x~ t !…5b̄. ~14!

Equipartition of energy, the equal division of the system e
ergy among its constituent particles in a dynamical sys
over an indefinitely long time, is based only on the equa
of simple time averages. Thus, for a system of pairwise
teracting particles, if the time average kinetic energy is
same for each particle, and the time-averaged interaction
tential is the same for every pair, equipartition is guarante
If, further, the interaction potential is a homogeneous fu
tion of ordern, the virial theorem fixes the relationship b
tween the time averaged kinetic and potential energy@21#.
Ergodicity is not required here either, only the existence
bounds for the coordinates and momenta.

For a system that achieves equipartition and has ordn
51, the infinite time average of the specific energy~energy
per unit mass!, « i will assume a unique value for alli ,

« i5 lim
T→`

1

T E
0

T

« i~ t !dt5«0[
5E

3
. ~15!

During a simulation, we can measure the degree of devia
from equipartition by computing the quantity

D~ t ![
1

«0
S 1

N (
i 51

N

@« i~ t !2«0#2D 1/2

, ~16!

where« i(t) is the averaged value of the specific energy up
a time t.

For systems that exhibit ergodic behavior on the ene
surface, the quantityD(t) should tend to zero in the infinite
time limit. However, as we have seen, equipartition of e
ergy is not sufficient to prove ergodicity, and therefore is n
a conclusive measure of the approach to equilibrium. A
cording to Tsuchiya, Konishi, and Gouda,D(t) tends to zero
approximately ast21/2. If there exist other isolating integral
that restrict the trajectories of the system on the energy
face~segmented phase space! or regions exist where the tra
jectories tend to remain for very long times~sticky areas!,
thenD(t) should converge to a nonzero constant~flatten! in
a finite time. This ‘‘time to flatness’’ ofD(t) should increase
with increasingN, and would be evidence of nonergodici
and long-time correlations that prevent proper energy sha
among the particles. This asymmetry is known to occur
r-
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the three-particle version of the OGS, and is associated w
interparticle correlations and the clumping of particles in t
phase space@22#.

To illustrate these ideas, we briefly consider an entir
different system consisting of mass points on the line wh
interact solely via elastic collisions. Figures 2 and 3 sh
dynamical simulations of this one-dimensional, collidin
mass point gas usingD as a measure of equipartition@23#.
Figure 2 showsD vs the cumulative number of collision
~collision number! for a system of ten equal mass particles
is well known that a finite system of equal mass points is
ergodic since, on collision, they just exchange veloci
However, we can see that the system is capable of efficie
sharing energy between particles so thatD is a decreasing
function ~on average! tending toward zero, indicating equ
partition of energy. Figure 3 showsD vs the collision number
for a system of ten particles with masses randomly dra
from a uniform distribution.

FIG. 2. D plotted vs the cumulative number of collisions~colli-
sion number! for a ten particle one-dimensional colliding ma
point gas with all particles having equal mass. For this known n
ergodic system,D decreases on average as a function time.

FIG. 3. D plotted vs the cumulative number of collisions~colli-
sion number! for a ten particle one-dimensional colliding ma
point gas with masses drawn from a random distribution. This s
tem has been shown to approach the equilibrium distribution in
long time limit ~see Ref.@23#!. Here alsoD decreases on average a
a function time as expected.
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56 2433ERGODIC PROPERTIES AND EQUILIBRIUM OF ONE- . . .
Numerical simulations have shown that this system
laxes to the theoretical equilibrium distribution function on
finite time scale. Comparisons between the numerical
theoretical distributions were made using a cumulativex2

statistic with a level of significance much less than 0.01@23#.
This implies that this system is both ergodic and mixing. W
see in Fig. 3 thatD(t) tends toward zero as expected. The
fore, as we discussed earlier, we see in these dynam
simulations that equipartition of energy by itself does n
guarantee ergodicity.

IV. SMALL- N DYNAMICAL SIMULATIONS
AND RESULTS

Previous studies of the OGS indicate very interest
phase-space properties for small-N systems. In particular
studies by Reidl and Miller~RM! showed the possible exis
tence of a critical population (N>11) in which 1D systems
become chaotic@12,13#. An estimate for the thermalizatio
time for anN511 system was 3.13107tc('1.953108t) as
a lower bound. Their work also suggested a rapid increas
the thermalization time with an increase in system popu
tion.

Lyapunov exponents were calculated as a function of t
for each mode using two nearby trajectories. Convergenc
a single Lyapunov exponent would indicate that the ph
space consists of a single ergodic component~i.e., unseg-
mented!. However, the simulations were not run for lon
enough to confirm positively the convergence of t
Lyapunov exponents to a single value for the two differe
modes. Convergence at a much longer time was inferred
extrapolation of the data. Even if the OGS is not ergodic a
mixing at N511, these experiments seem to indicate a f
damental change in behavior at the critical population.
flattening ofD(t) to a nonzero constant in a finite time fo
N511 would indicate nonergodic behavior and segmenta
of the phase space. However, if no flattening were obser
in a finite simulation time, the results would be inconclusiv
since we have seen that equipartition of energy is not a
ficient measure of an approach to equilibrium.

To test these ideas we first investigated several smaN
systems~N54, 6, 8, 10, and 11! using the statistical method
described in Sec. III. The initial conditions are small pert
bations from known periodic orbits~breathing mode and
mode 1! derived by RM and described in Refs.@12# and@13#.
The breathing mode is highly unstable, and small pertur
tions from periodicity grow very rapidly for all system popu
lations due to the high probability of multiple particle e
counters. Mode 1 orbits are much more stable than
breathing mode since they contain only two-particle enco
ters, but appeared to become unstable for even the sma
perturbation at a population ofN511.

In Figs. 4–8 we plotD vs time in units oft for each of the
above systems. The approximate time to flatness, where
ible, is indicated in the caption. AlthoughN,11 systems are
not ergodic, prominent peaks inD are apparent in each fig
ure. In addition, theN54, 6, and 8 systems seem to devel
flat regions after a time which increases withN. No flatness
has developed in theN510 and 11 systems after a timet
543108t. This increase in time to flatness, if indeedD in
these higher-dimensional systems exhibits flatness, is
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completely unexpected as the system population incre
towardN511.

From Figs. 7 and 8, it is too difficult to tell ifD(t) will
continue its general downward trend to zero or will flatt
out. What is clear is thatD(t) decreases extremely slowly
even very far out in time where any effects of fluctuatio
from equipartition should be extremely small.

To determine ifD(t) plots can distinguish between stab
and unstable regions in the phase space, we chose the i
condition as a small perturbation from the highly stab
mode 1 periodic orbit. Figure 9 shows a typical plot for
N58 system. In common with the earlier plots, which ari
in unstable regions of the phase space, here also we see

FIG. 4. D(t) for a four-particle system whose initial condition
a small perturbation from the breathing mode. Several peaks
seen, and a flattening occurs aroundt513107. Time is measured
in units of t.

FIG. 5. D(t) for a six-particle system whose initial condition
a small perturbation from the breathing mode. An initial large pe
is seen followed by several smaller peaks. The general decline
ward zero inD(t) is interrupted by a flattening that occurs arou
t523107. Time is measured in units oft.
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2434 56KENNETH R. YAWN AND BRUCE N. MILLER
large and several smaller peaks followed by a continued
duction inD(t).

V. EQUILIBRIUM INITIAL CONDITIONS AND RESULTS

If the hypothesis of Tsuchiya, Konishi, and Gouda th
the occurrence of the large peak inD(t) signifies the onset o
equilibrium is correct, then it should not arise if the initi
state is drawn from the equilibrium ensemble. To constr
an equilibrium state, it is tempting to simply sample the eq
librium m-space distribution, Eq.~12!, directly. ForN564 it
is easily shown that this is close to the exact single-part

FIG. 6. D(t) for an eight-particle system whose initial conditio
is a small perturbation from the breathing mode. Several la
peaks are seen followed by several smaller peaks. The genera
cline toward zero inD(t) is interrupted by a flattening that occu
aroundt51.53108. Time is measured in units oft.

FIG. 7. D(t) for a ten-particle system whose initial condition
a small perturbation from the breathing mode. Two large peaks
seen followed by several smaller peaks.D(t) continues its genera
trend toward zero with no obvious flattening, although a grad
reduction of slope becomes apparent aroundt523107. Time is
measured in units oft.
e-

t

t
i-

le

density, Eqs.~7!–~10! derived by Rybicki@14#. However,
this procedure would ignore the correlations between p
ticles. Therefore the resulting point in phase space would
be characteristic of true equilibrium. To avoid this difficul
we carefully initialized a 64-particle system by directly sam
pling the canonical ensemble. The method we selected
spects all of the interparticle correlations and therefore i
highly probable representation of equilibrium for the OGS

The canonical distribution is given b
@~1/ZN!exp~2bH!#, whereZN is the partition function andH
is the system Hamiltonian. To sample the configurat
space, we note from Eq.~3! that the potential energy of th
system can be written as a sum over nearest-neighbor
tances. Thus, in the canonical ensemble, these nea

e
de-

re

l

FIG. 8. D(t) for an 11-particle system whose initial condition
a small perturbation from the breathing mode. Two initial peaks
seen followed by several smaller peaks.D(t) continues its genera
trend toward zero with no obvious flattening. A large jump upwa
is seen aroundt52.53108. Time is measured in units oft.

FIG. 9. D(t) for an eight-particle system whose initial conditio
is a small perturbation from mode I. One large peak is seen aft
considerable time has past.D(t) continues its general trend towar
zero with no obvious flattening, although a significant reduction
slope is seen aroundt543107. Time is measured in units oft.
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neighbor distances are distributed exponentially. After sa
pling the exponentials, the particle positions are then shi
to fix the center of mass at the origin. The particle velocit
are set by first freely sampling a single particle’s veloc
from a Gaussian distribution, and then using Levy’s meth
@24# to obtain the velocities of the otherN21 particles of the
ordered system from the canonical ensemble under the a
tional constraint that the total momentum vanishes. Furt
details can be found elsewhere@14,18#.

The motivation for sampling the canonical ensemble is
create an initial condition which is a typical equilibrium
state. This is not to imply that the system evolves isoth
mally, i.e., while interacting with a heat bath. Once the e
ergy is set in a simulation, it remains fixed. However, sin
the potential energy of the system is a homogeneous func
of the coordinates of degree 1, the ergodic properties o
phase space orbit do not depend on the energy@14#, so that
the canonical ensemble is also appropriate for finiteN.

Figure 10 showsD(t) up to a timet513108t for a simu-
lation with the initial equilibrium system described abov
We see here that theD(t) resulting from the equilibrium
system has all of the central features, with the exception
flattening, of both small and largeN.

VI. DISCUSSION AND CONCLUSIONS

The determination of the ergodic properties of an arbitr
dynamical system with many degrees of freedom is
tremely difficult with current tools. There are a few system
where definite statements are possible. Commonly kno
examples of integrable systems are colliding point masse
the line ~equal masses!, coupled linear oscillators, and th
Toda lattice, whereas some known ergodic systems ar
assortment of billiards~stadium, Sinai, wedge, etc.!. Proofs
of ergodicity, either analytic or numerical, for systems w
arbitrary degrees of freedom are extremely rare. Because
dynamics of the OGS is only slightly more complex th
point particles on the line, it might seem that the ergo

FIG. 10. D(t) for a 64-particle system with the initial conditio
sampled from the canonical ensemble. An ‘‘equilibrium’’ peak
seen aroundt513105 followed by a general trend toward zero
Time is measured in units oft.
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properties should be well known, but this is not the case
The papers by Tsuchiya, Konishi, and Gouda suggest

computations ofD(t) and its asymptotic behavior provide
measure of the attainment of equilibrium, which requir
strong ergodic properties. Thus, if their hypothesis that
first large peak occurring in plots ofD vs time signifies the
onset of equilibrium were correct, this would provide such
tool. Unfortunately, our studies of both small and large s
tems do not support this.

We have shown that a majority of the dynamical simu
tions of both stable and unstable nonergodic small-N ver-
sions of the OGS, as well as a 64-particle system prepare
an equilibrium state, exhibit a large central peak inD(t) and
other peaks which decrease in size on average as
progresses. Rather than indicating the onset of equilibri
these peaks inD(t) probably represent areas of the pha
space in which the system resides for very long periods
time ~sticky regions!, since these occur in systems wi
known stable structures on the energy hypersurface in ph
space. The nature of the time average forD(t) would tend to
reduce the magnitude of peaks that occur later in time eve
these peaks were caused by similar events.

Equipartition of energy, i.e., the vanishing ofD(t) in the
asymptotic (t→`) limit, has classically been associated wi
the approach to equilibrium. Since the classic studies of n
linear oscillators carried out by Fermi, Pasta, and Ulam@25#,
energy equipartition has been identified with equilibrium.
this paper we have shown that blind faith in equipartition
a litmus test for equilibrium is not justified. Lack of equipa
tition, or ‘‘flattening’’ @i.e., the failure ofD(t) to converge to
zero#, certainly demonstrates nonergodic behavior. Flatt
ing indicates a segmented energy surface and broken s
metry on actual trajectories. These features were dem
strated in the various dynamical simulations described h
Simulations of multiple colliding mass points on a line sho
D(t) approaching zero for both ergodic~nonequal mass! and
nonergodic~equal mass! versions of the multiple colliding
mass point system. For the OGS systems, we found ei
flattening or equipartition depending on the initial cond
tions. For theN58 system, equipartition of energy seems
occur even in a stable region of the phase space. In com
with the earlier simulations of Tsuchiya, Konishi, an
Gouda, all systems were run for a period of time betwe
108t and 109t. It is of course possible that flattening cou
occur in any of these systems on longer time scales and h
of this may be seen in the 64-particle simulations.

In summary, a number of studies have shown a deci
lack of an approach to equilibrium. There is evidence that
OGS resides for some time in states which look like equil
rium and then later drifts away@9#. In addition, studies of
time correlations did not show conclusive convergence
zero on very long-time scales@10#. Systems initialized in a
stationary, nonequilibrium, Vlasov state~waterbag! have re-
mained in this state for long times, and have provided
evidence of thermalization or evolution to another station
state@26#. At the same time, dynamical studies of small sy
tems have shown the presence of a chaotic segment o
energy hypersurface whose measure increases withN. That
is, the system looks more like a thermodynamic system aN
increases. Examples of this behavior are the increas
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Kolmogorov entropy found by Benettin, Froeschle, a
Scheidecker@27#, the increase of the diffusion rate of pa
ticles out of clusters@28#, and the approach of the velocit
and position distributions to the predictions of the microc
nonical ensemble@29,30#.

In earlier work we showed that the mode 1 orbit chang
from stable to unstable atN511. A possible scenario for thi
system is that stable periodic orbits always exist in the ph
space for any finiteN, but that their number decreases wi
N. This will have to be explored later. In this current wo
we have shown that recent measures proposed to test r
ation to equilibrium are insufficient, but do indicate the e
ac

7
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e

-

s

se

ax-
-

istence of sticky regions in the phase space where the sy
is localized for long time periods. At this time, we believ
that there is no definitive proof of ergodicity in the OGS.
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